Collocation Methods for the Computation of Periodic Solutions of Delay Diierential Equations Collocation Methods for the Computation of Periodic Solutions of Delay Diierential Equations

نویسندگان

  • K. Engelborghs
  • T. Luzyanina
چکیده

In this paper we investigate collocation methods for the computation of periodic solutions of autonomous delay diierential equations (DDEs). Periodic solutions are found by solving a periodic two-point boundary value problem, which is an innnite-dimensional problem for DDEs, in contrast to the case of ordinary diierential equations. We investigate three collocation methods based on piecewise polyno-mials. We discuss computational issues and show numerical orders of convergence using an extensive number of tests. We compare our numerical results with known theoretical convergence results for initial value problems for DDEs. In particular, we show how super-convergence at the mesh points can be lost or recovered depending on the DDE model under consideration and on the choice of colloca-tion discretisation. We end with a brief discussion of adaptive mesh selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions of Differential Algebraic Equations with Time Delays: Computation and Stability Analysis

This paper concerns the computation and local stability analysis of periodic solutions to semi-explicit differential algebraic equations with time delays (delay DAEs) of index 1 and index 2. By presenting different formulations of delay DAEs, we motivate our choice of a direct treatment of these equations. Periodic solutions are computed by solving a periodic two-point boundary value problem, w...

متن کامل

Numerical Bifurcation Analysis of Diierential Equations with State-dependent Delay Numerical Bifurcation Analysis of Diierential Equations with State-dependent Delay

In this paper we extend existing numerical methods for bifurca-tion analysis of delay diierential equations with constant delay towards equations with state-dependent delay. In particular, we study the computation, continuation and stability of steady state solutions and periodic solutions of such equations. We collect the relevant theory and point out open theoretical problems in the context o...

متن کامل

‎Multistep collocation method for nonlinear delay integral equations

‎The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

Superconvergence analysis of multistep collocation method for delay functional integral equations

In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999